Derivation of generalized Schrodinger equation

Classically any single particle system can be describe through the use of the
Lagrangian formalism. The Lagrangian can be written as
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with (x,4) a pair of generalized coordinates and V' (x) a generic potential.
By applying the calculus of variations to minimize the action, we derive the
Euler-Lagrange equations, which govern the dynamics of the system:
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These equations provide the equations of motion for the system in terms of the
generalized coordinates.
By applying the Euler-Lagrange equations to the generic Lagrangian form used

in Eq. (1) we get
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where the generalized momentum is defined as p = mz.
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We can use the generalized momentum to rewrite the Lagrangian in function fo
a new set of generalized coordinates (z,p) finding
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By differentiating the Lagrangian with respect to the generalized momentum,
we obtain the Hamiltonian formulation of mechanics.
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By looking at Eq. and @, we see a correspondence between variations in x

and p: at fixed time a change in the Lagrangian with respect to position corresponds
to (generate) a change in momentum over time and a change in the Lagrangian with



respect to momentum in the momentum corresponds to (generate) a change in posi-
tion over time. By analogy with quantum mechanics, we define the momentum p as
the generator of translations in space and x as the generator of momentum evolution.

This can be further generalized by looking at a change of the Lagrangian with
respect to time
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where in the second line we have used the Euler-Lagrange equation. We notice that
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with E the energy.
Finally we can rewrite Eq.@ as
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Hence, in analogy what previously done we say that the energy F is the gener-
ator of time evolution.

We will now use this finding to derive the Schrédinger equation in quantum
mechanics.

Given a time dependent state |1(t)) we define the time evolution operator U ()
as

() = U@)|4(0)) (9)
There are two physical constraints that we need to impose upon the time evolu-

tion operator U

1. Probability is conserved through time

2. Time evolution is reversible

The first constraint implies that the evolution operator needs to be unitary
Ut = 1.

To derive the form of U (t) we start by studying a small time variation dt. In
this case, we can develop U(t) in series up to first order an Eq.() takes the form
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with 1 the identity operator and U(0) the time evolution operator at time ¢ = 0.
Rewriting Eq. we get
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where U(t (t) is the time derivative of the evolution operator.
Using the unitary of U we get UT(O) = —U(O) which means that the U operator

is anti-hermitian. We define an hermitian operator H = zU (0). Then Eq.(1 . can
be written as
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In analogy with what we have prev1osuly done in the Lagrangian formalism, we
identify H as the Hamiltonian of the system and recognize that it is the generator
of time evolution.

One final step remains: both sides of Eq. must have the same units. Using
dimensional analysis, we can rewrite it as
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where 7 is the reduced Planck constant.
There are three key points to note about our derivation of the Schrodinger equa-
tion:

= H|¢) (13)

e The Planck constant h appears as a consequence of dimensional analysis.

e The presence of the imaginary unit ¢, and thus the inherent complexity of
the equation, follows directly from the requirement that time evolution be
unitary, Moreover to preserve probability, the time evolution generator must
be Hermitian.

e The Hamiltonian H rises from the analogy with the generator of time evolution
in classical mechanics..



