
Derivation of generalized Schrödinger equation

Classically any single particle system can be describe through the use of the
Lagrangian formalism. The Lagrangian can be written as

L(t, x(t), ẋ(t)) = 1

2
mẋ2 − V (x) (1)

with (x, ẋ) a pair of generalized coordinates and V (x) a generic potential.
By applying the calculus of variations to minimize the action, we derive the

Euler-Lagrange equations, which govern the dynamics of the system:

∂L
∂x

=
d

dt

∂L
∂ẋ

(2)

These equations provide the equations of motion for the system in terms of the
generalized coordinates.

By applying the Euler-Lagrange equations to the generic Lagrangian form used
in Eq.(1) we get

∂L
∂x

=
dp

dt
(3)

where the generalized momentum is defined as p = mẋ.

∂L
∂x

=
dp

dt
(4)

We can use the generalized momentum to rewrite the Lagrangian in function fo
a new set of generalized coordinates (x, p) finding

L(t, x(t), p(t)) = 1

2m
p2 − V (x) (5)

By differentiating the Lagrangian with respect to the generalized momentum,
we obtain the Hamiltonian formulation of mechanics.

∂L
∂p

=
p

m
=
dx

dt
(6)

By looking at Eq.(3) and (6), we see a correspondence between variations in x
and p: at fixed time a change in the Lagrangian with respect to position corresponds
to (generate) a change in momentum over time and a change in the Lagrangian with
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respect to momentum in the momentum corresponds to (generate) a change in posi-
tion over time. By analogy with quantum mechanics, we define the momentum p as
the generator of translations in space and x as the generator of momentum evolution.

This can be further generalized by looking at a change of the Lagrangian with
respect to time

dL(t, x(t), ẋ(t))
dt

=
∂L
∂t

+
∂x

∂t

∂L
∂x

+
∂ẋ

∂t

∂L
∂ẋ

=
∂L
∂t

+ ẋ
d

dt

(∂L
∂ẋ

)
+
∂ẋ

∂t

∂L
∂ẋ

=
∂L
∂t

+
d

dt

(∂L
∂ẋ

ẋ
) (7)

where in the second line we have used the Euler-Lagrange equation. We notice that

L − ∂L
∂ẋ

ẋ = −
(1
2
mẋ2 + V (x)) = E

with E the energy.
Finally we can rewrite Eq.(7) as

∂L
∂t

= −dE
dt

(8)

Hence, in analogy what previously done we say that the energy E is the gener-
ator of time evolution.

We will now use this finding to derive the Schrödinger equation in quantum
mechanics.

Given a time dependent state |ψ(t)⟩ we define the time evolution operator Û(t)
as

|ψ(t)⟩ = Û(t)|ψ(0)⟩ (9)

There are two physical constraints that we need to impose upon the time evolu-
tion operator Û

1. Probability is conserved through time

2. Time evolution is reversible

The first constraint implies that the evolution operator needs to be unitary
Û †U = 1.

To derive the form of Û(t) we start by studying a small time variation dt. In
this case, we can develop Û(t) in series up to first order an Eq.() takes the form
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|ψ(dt)⟩ = (1+
˙̂
U(0)dt+O(dt2))|ψ(0)⟩ (10)

with 1 the identity operator and Û(0) the time evolution operator at time t = 0.
Rewriting Eq.(10) we get

|ψ(dt)⟩ − |ψ(0)⟩
dt

=
d|ψ⟩
dt

=
˙̂
U(0)|ψ⟩ (11)

where
˙̂
U(t) is the time derivative of the evolution operator.

Using the unitary of Û we get
˙̂
U †(0) = − ˙̂

U(0), which means that the
˙̂
U operator

is anti-hermitian. We define an hermitian operator Ĥ = i
˙̂
U(0). Then Eq.(13) can

be written as

i
d|ψ⟩
dt

= Ĥ|ψ⟩ (12)

In analogy with what we have previosuly done in the Lagrangian formalism, we
identify Ĥ as the Hamiltonian of the system and recognize that it is the generator
of time evolution.

One final step remains: both sides of Eq. (12) must have the same units. Using
dimensional analysis, we can rewrite it as

ih̄
d|ψ⟩
dt

= Ĥ|ψ⟩ (13)

where h̄ is the reduced Planck constant.
There are three key points to note about our derivation of the Schrödinger equa-

tion:

• The Planck constant h appears as a consequence of dimensional analysis.

• The presence of the imaginary unit i, and thus the inherent complexity of
the equation, follows directly from the requirement that time evolution be
unitary, Moreover to preserve probability, the time evolution generator must
be Hermitian.

• The Hamiltonian Ĥ rises from the analogy with the generator of time evolution
in classical mechanics..
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