

Derivation of generalized Schrödinger equation

Classically any single particle system can be describe through the use of the Lagrangian formalism. The Lagrangian can be written as

$$\mathcal{L}(t, x(t), \dot{x}(t)) = \frac{1}{2}m\dot{x}^2 - V(x) \quad (1)$$

with (x, \dot{x}) a pair of generalized coordinates and $V(x)$ a generic potential.

By applying the calculus of variations to minimize the action, we derive the Euler-Lagrange equations, which govern the dynamics of the system:

$$\frac{\partial \mathcal{L}}{\partial x} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{x}} \quad (2)$$

These equations provide the equations of motion for the system in terms of the generalized coordinates.

By applying the Euler-Lagrange equations to the generic Lagrangian form used in Eq.(1) we get

$$\frac{\partial \mathcal{L}}{\partial x} = \frac{dp}{dt} \quad (3)$$

where the generalized momentum is defined as $p = m\dot{x}$.

$$\frac{\partial \mathcal{L}}{\partial x} = \frac{dp}{dt} \quad (4)$$

We can use the generalized momentum to rewrite the Lagrangian in function fo a new set of generalized coordinates (x, p) finding

$$\mathcal{L}(t, x(t), p(t)) = \frac{1}{2m}p^2 - V(x) \quad (5)$$

By differentiating the Lagrangian with respect to the generalized momentum, we obtain the Hamiltonian formulation of mechanics.

$$\frac{\partial \mathcal{L}}{\partial p} = \frac{p}{m} = \frac{dx}{dt} \quad (6)$$

By looking at Eq.(3) and (6), we see a correspondence between variations in x and p : at fixed time a change in the Lagrangian with respect to position corresponds to (generate) a change in momentum over time and a change in the Lagrangian with

respect to momentum in the momentum corresponds to (generate) a change in position over time. By analogy with quantum mechanics, we define the momentum p as the generator of translations in space and x as the generator of momentum evolution.

This can be further generalized by looking at a change of the Lagrangian with respect to time

$$\begin{aligned}\frac{d\mathcal{L}(t, x(t), \dot{x}(t))}{dt} &= \frac{\partial\mathcal{L}}{\partial t} + \frac{\partial x}{\partial t} \frac{\partial\mathcal{L}}{\partial x} + \frac{\partial \dot{x}}{\partial t} \frac{\partial\mathcal{L}}{\partial \dot{x}} \\ &= \frac{\partial\mathcal{L}}{\partial t} + \dot{x} \frac{d}{dt} \left(\frac{\partial\mathcal{L}}{\partial \dot{x}} \right) + \frac{\partial \dot{x}}{\partial t} \frac{\partial\mathcal{L}}{\partial \dot{x}} \\ &= \frac{\partial\mathcal{L}}{\partial t} + \frac{d}{dt} \left(\frac{\partial\mathcal{L}}{\partial \dot{x}} \dot{x} \right)\end{aligned}\quad (7)$$

where in the second line we have used the Euler-Lagrange equation. We notice that

$$\mathcal{L} - \frac{\partial\mathcal{L}}{\partial \dot{x}} \dot{x} = -\left(\frac{1}{2}m\dot{x}^2 + V(x)\right) = E$$

with E the energy.

Finally we can rewrite Eq.(7) as

$$\frac{\partial\mathcal{L}}{\partial t} = -\frac{dE}{dt} \quad (8)$$

Hence, in analogy what previously done we say that the energy E is the generator of time evolution.

We will now use this finding to derive the Schrödinger equation in quantum mechanics.

Given a time dependent state $|\psi(t)\rangle$ we define the time evolution operator $\hat{U}(t)$ as

$$|\psi(t)\rangle = \hat{U}(t)|\psi(0)\rangle \quad (9)$$

There are two physical constraints that we need to impose upon the time evolution operator \hat{U}

1. Probability is conserved through time
2. Time evolution is reversible

The first constraint implies that the evolution operator needs to be unitary $\hat{U}^\dagger \hat{U} = \mathbb{1}$.

To derive the form of $\hat{U}(t)$ we start by studying a small time variation dt . In this case, we can develop $\hat{U}(t)$ in series up to first order an Eq.(9) takes the form

$$|\psi(dt)\rangle = (\mathbb{1} + \dot{\hat{U}}(0)dt + \mathcal{O}(dt^2))|\psi(0)\rangle \quad (10)$$

with $\mathbb{1}$ the identity operator and $\hat{U}(0)$ the time evolution operator at time $t = 0$.

Rewriting Eq.(10) we get

$$\frac{|\psi(dt)\rangle - |\psi(0)\rangle}{dt} = \frac{d|\psi\rangle}{dt} = \dot{\hat{U}}(0)|\psi\rangle \quad (11)$$

where $\dot{\hat{U}}(t)$ is the time derivative of the evolution operator.

Using the unitary of \hat{U} we get $\dot{\hat{U}}^\dagger(0) = -\dot{\hat{U}}(0)$, which means that the $\dot{\hat{U}}$ operator is anti-hermitian. We define an hermitian operator $\hat{H} = i\dot{\hat{U}}(0)$. Then Eq.(13) can be written as

$$i\frac{d|\psi\rangle}{dt} = \hat{H}|\psi\rangle \quad (12)$$

In analogy with what we have previously done in the Lagrangian formalism, we identify \hat{H} as the Hamiltonian of the system and recognize that it is the generator of time evolution.

One final step remains: both sides of Eq. (12) must have the same units. Using dimensional analysis, we can rewrite it as

$$i\hbar\frac{d|\psi\rangle}{dt} = \hat{H}|\psi\rangle \quad (13)$$

where \hbar is the reduced Planck constant.

There are three key points to note about our derivation of the Schrödinger equation:

- The Planck constant h appears as a consequence of dimensional analysis.
- The presence of the imaginary unit i , and thus the inherent complexity of the equation, follows directly from the requirement that time evolution be unitary, Moreover to preserve probability, the time evolution generator must be Hermitian.
- The Hamiltonian \hat{H} rises from the analogy with the generator of time evolution in classical mechanics..